
Scuba

Jonathon Reinhart

Mar 25, 2024

CONTENTS

1 Introduction 3

2 Installation 5

3 Configuration 7

4 Command-Line Interface 17

5 Bash Completion 19

6 Environment 21

7 Change Log 23

8 Contributing Guide 33

i

ii

Scuba

Local builds made easy, using Docker.

CONTENTS 1

Scuba

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Scuba makes it easier to use Docker containers in everyday development. It is intended to allow a developer to commit
an environment setup where the entire build environment is encapsulated in a Docker container.

Its purpose is to lower the barrier to using Docker for everyday builds. Scuba keeps you from having to remember a
complex docker run command line, and turns this:

$ docker run -it --rm -v $(pwd):/build:z -w /build -u $(id -u):$(id -g) gcc:5.1 make␣
→˓myprogram

into this:

$ scuba make myprogram

Scuba references a .scuba.yml file which is intended to be checked-in to your project’s version control, which ensures
that all developers are always using the exact correct version of the the Docker build environment for a given commit.

3

Scuba

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Install via pip

Scuba is hosted at PyPI, and installation via pip is the perferred method.

To install:

$ sudo pip install scuba

To install with argcomplete (for Bash Completion support):

$ sudo pip install scuba[argcomplete]

To uninstall:

$ sudo pip uninstall scuba

2.2 Install from source

Scuba can be built from source on Linux only (due to the fact that scubainit must be compiled):

1. Run make to build scubainit

2. Run ./run_unit_tests.py to run the unit tests

3. Run sudo python setup.py install to install scuba

4. Run ./run_full_tests.py to test the installed version of scuba

If musl-libc is installed, it can be used to reduce the size of scubainit, by overriding the CC environment variable in
step 1:

CC=/usr/local/musl/bin/musl-gcc make

Note: Note that installing from source in this manner can lead to an installation with increased startup times for Scbua.
See #71 for more details. This can be remedied by forcing a wheel to be installed, as such:

export CC=/usr/local/musl/bin/musl-gcc # (optional)
sudo pip install wheel
python setup.py bdist_wheel
sudo pip install dist/scuba-<version>-py3-none-any.whl

5

https://pypi.python.org/pypi/scuba
https://www.musl-libc.org/
https://github.com/JonathonReinhart/scuba/issues/71
http://pythonwheels.com/

Scuba

6 Chapter 2. Installation

CHAPTER

THREE

CONFIGURATION

Configuration is done using a YAML file named .scuba.yml in the root directory of your project. It is expected that
.scuba.yml will be checked-in to version control.

An example .scuba.yml file might look like this:

image: gcc:5.1

aliases:
build: make -j4

In this example, running scuba build foo would execute make -j4 foo in a gcc:5.1 Docker container.

3.1 Scuba YAML File Reference

.scuba.yml is a YAML file which defines project-specific settings, allowing a project to use Scuba as part of manual
command-line interaction. As with many other YAML file schemas, most options are controlled by top-level keys.

3.1.1 Top-level keys

Key Scuba Version Description Alias
image (all) Docker image to run Can override
environment 2.3.0 Environment variables Can extend or over-

ride
docker_args 2.8.0 Additional arguments to docker run Can extend or over-

ride
volumes 2.9.0 Additional volumes to mount Can extend or over-

ride
aliases 1.1.0 Command/script aliases
hooks 1.7.0 Hook scripts run during startup
shell 2.6.0 Override container shell path Can override
entrypoint 2.4.0 Override container ENTRYPOINT path Can override

7

http://yaml.org/
http://yaml.org/

Scuba

image

The image node defines the Docker image from which Scuba containers are created.

Example:

image: debian:8.2

The image node is usually necessary but, as of scuba 2.5, can be omitted for .scuba.yml files in which only the
aliases are intended to be used.

environment

The optional environment node (added in v2.3.0) allows environment variables to be specified. This can be either
a mapping (dictionary), or a list of KEY=VALUE pairs. If a value is not specified, the value is taken from the external
environment.

Examples:

environment:
FOO: "This is foo"
SECRET:

environment:
- FOO=This is foo
- SECRET

docker_args

The optional docker_args node (added in v2.8.0) allows additional docker arguments to be specified.

Example:

docker_args: --privileged -v "/tmp/hello world:/tmp/hello world"

The value of docker_args is parsed as shell command line arguments using shlex.split.

The previous example could be equivalently written in YAML’s single-quoted style:

docker_args: '--privileged -v "/tmp/hello world:/tmp/hello world"'

volumes

The optional volumes node (added in v2.9.0) allows additional bind-mounts to be specified. As of v2.13.0, named
volumes are also supported.

volumes is a mapping (dictionary) where each key is the container-path. In the simple form, the value is a string, which
can be:

• An absolute or relative path which results in a bind-mount.

• A Docker volume name.

8 Chapter 3. Configuration

https://docs.python.org/3/library/shlex.html#shlex.split
https://yaml.org/spec/1.2/spec.html#id2788097
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/

Scuba

Listing 1: Example of simple-form volumes

volumes:
/var/lib/foo: /host/foo # bind-mount: absolute path
/var/lib/bar: ./bar # bind-mount: path relative to .scuba.yml dir
/var/log: persist-logs # named volume

In the complex form, the value is a mapping with the following supported keys:

• hostpath: An absolute or relative path specifying a host bind-mount.

• name: The name of a named Docker volume.

• options: A comma-separated list of volume options.

hostpath and name are mutually-exclusive and one must be specified.

Listing 2: Example of complex-form volumes

volumes:
/var/lib/foo:
hostpath: /host/foo # bind-mount
options: ro,cached

/var/log:
name: persist-logs # named volume

The paths (host or container) used in volume mappings can contain environment variables which are expanded
in the host environment. For example, this configuration would map the user’s /home/username/.config/
application1 directory into the container at the same path.

volumes:
$TEST_HOME/.config/application1: $TEST_HOME/.config/application1

If a referenced environment variable is not set, Scuba exits with a configuration error.

Volume container paths must be absolute.

Bind-mount host paths can be absolute or relative. If a relative path is used, it is interpreted as relative to the directory
in which .scuba.yml is found. To avoid ambiguity with a named volume, relative paths must start with ./ or ../.

Bind-mount host directories which do not already exist are created as the current user before creating the container.

Note: Because variable expansion is now applied to all volume paths, if one desires to use a literal $ character in a
path, it must be written as $$.

Note: Docker named volumes are created with drwxr-xr-x (0755) permissions. If scuba is not run with --root, the
scuba user will be unable to write to this directory. As a workaround, one can use a root hook to change permissions
on the directory.

volumes:
/foo: foo-volume

hooks:
root: chmod 777 /foo

3.1. Scuba YAML File Reference 9

Scuba

aliases

The optional aliases node is a mapping (dictionary) of bash-like aliases, where each key is an alias, and each value is
the command that will be run when that alias is specified as the user command during scuba invocation. The command
is parsed like a shell command-line, and additional user arguments from the command line are appended to the alias
arguments. Aliases follow the common script schema.

Example:

aliases:
build: make -j4

In this example, $ scuba build foo would execute make -j4 foo in the container.

Aliases can also extend/override various top-level keys. See Alias-level keys.

hooks

The optional hooks node is a mapping (dictionary) of “hook” scripts that run as part of scubainit before running
the user command. They use the common script schema. The following hooks exist:

• root - Runs just before scubainit switches from root to scubauser

• user - Runs just before scubainit executes the user command

Example:

hooks:
root:
script:

- 'echo "HOOK: This runs before we switch users"'
- id

user: 'echo "HOOK: After switching users, uid=$(id -u) gid=$(id -g)"'

shell

The optional shell node (added in v2.6.0) allows the default shell that Scuba uses in the container (/bin/sh) to be
overridden by another shell. This is useful for images that do not have a shell located at /bin/sh.

Example:

shell: /busybox/sh

entrypoint

The optional entrypoint node (added in v2.4.0) allows the ENTRYPOINT of the Docker image to be overridden:

entrypoint: /another/script

The entrypoint can also be set to null, which is useful when an image’s entrypoint is not suitable:

entrypoint:

10 Chapter 3. Configuration

https://docs.docker.com/engine/reference/run/#entrypoint-default-command-to-execute-at-runtime

Scuba

3.1.2 Alias-level keys

Key Scuba Version Description
image 1.1.0 Override Docker image to run
environment 2.3.0 Extend / override environment variables
docker_args 2.8.0 Extend / override additional arguments to docker run
volumes 2.9.0 Extend / override additional volumes to mount
shell 2.6.0 Override container shell path
entrypoint 2.4.0 Override container ENTRYPOINT path
root 2.6.0 Run container as root

image

Aliases can override the global image, allowing aliases to use different images. Example:

image: default_image
aliases:

This one inherits the default, top-level 'image' and specifies "script" as a string
default:
script: cat /etc/os-release

This one specifies a different image to use and specifies "script" as a list
different:
image: alpine
script:
- cat /etc/os-release

environment

Aliases can add to the top-level environment and override its values using the same syntax:

environment:
FOO: "Top-level"

aliases:
example:
environment:
FOO: "Override"
BAR: "New"

script:
- echo $FOO $BAR

3.1. Scuba YAML File Reference 11

Scuba

docker_args

Aliases can extend the top-level docker_args. The following example will produce the docker arguments
--privileged -v /tmp/bar:/tmp/bar when executing the example alias:

docker_args: --privileged
aliases:
example:
docker_args: -v /tmp/bar:/tmp/bar
script:
- ls -l /tmp/

Aliases can also opt to override the top-level docker_args, replacing it with a new value. This is achieved with the
!override tag:

docker_args: -v /tmp/foo:/tmp/foo
aliases:
example:
docker_args: !override -v /tmp/bar:/tmp/bar
script:

- ls -l /tmp/

The content of the docker_args key is re-parsed as YAML in order to allow combining the !override tag with other
tags; however, this requires quoting the value, since YAML forbids a plain-style scalar from beginning with a ! (see the
spec). In the next example, the top-level alias is replaced with an explicit !!null tag, so that no additional arguments
are passed to docker when executing the example alias:

docker_args: -v /tmp/foo:/tmp/foo
aliases:
example:
docker_args: !override '!!null'
script:
- ls -l /tmp/

volumes

Aliases can extend or override the top-level volumes:

volumes:
/var/lib/foo: /host/foo

aliases:
example:
volumes:
/var/lib/foo: /example/foo
/var/lib/bar: /example/bar

script:
- ls -l /var/lib/foo /var/lib/bar

12 Chapter 3. Configuration

https://yaml.org/spec/1.2/spec.html#id2788859
https://yaml.org/spec/1.2/spec.html#id2788859

Scuba

shell

Aliases can override the shell from the default or the top-level of the .scuba.yml file:

aliases:
my_shell:
shell: /bin/cool_shell
script:
- echo "This is executing in cool_shell"

busybox_shell:
script:
- echo "This is executing in scuba's default shell"

entrypoint

An alias can override the image-default or top-level .scuba.yml entrypoint, which is most useful when an alias defines
a special image.

aliases:
build:
image: build/image:1.2
entrypoint:

root

The optional root node (added in v2.6.0) allows an alias to specify whether its container should be run as root:

aliases:
root_check:
root: true
script:
- echo 'Only root can do this!'
- echo "I am UID $(id -u)"
- cat /etc/shadow

3.1.3 Common script schema

Several parts of .scuba.yml which define “scripts” use a common schema. The common script schema can define a
“script” in one of several forms:

The simple form is simply a single string value:

hooks:
user: echo hello

The complex form is a mapping, which must contain a script subkey, whose value is either single string value:

hooks:
root:
script: echo hello

. . . or a list of strings making up the script:

3.1. Scuba YAML File Reference 13

Scuba

hooks:
root:
script:

- 'echo hello!'
- touch foo
- 'echo goodbye :-('

Note that in any case, YAML strings do not need to be enclosed in quotes, unless there are “confusing” characters (like
a colon). In any case, it is always safer to include quotes.

3.1.4 Accessing external YAML content

In addition to normal YAML syntax, an additional constructor, !from_yaml, (added in v1.2.0) is available for use in
.scuba.yml which allows a value to be retrieved from an external YAML file. It has the following syntax:

!from_yaml filename key

Arguments:

• filename - The path of an external YAML file (relative to .scuba.yaml)

• key - A dot-separated locator of the key to retrieve

This is useful for projects where a Docker image in which to build is already specified in another YAML file, for
example in .gitlab-ci.yml. This eliminates the redundancy between the configuration files. An example which uses
this:

Listing 3: .gitlab-ci.yml

image: gcc:5.1

Listing 4: .scuba.yml

image: !from_yaml .gitlab-ci.yml image

Here’s a more elaborate example which defines multiple aliases which correspond to jobs defined by .gitlab-ci.yml:

Listing 5: .gitlab-ci.yml

build_c:
image: gcc:5.1
script:

- make something
- make something-else

build_py:
image: python:3.7
script:

- setup.py bdist_wheel

Listing 6: .scuba.yml

Note that 'image' is not necessary if only invoking aliases

(continues on next page)

14 Chapter 3. Configuration

http://yaml.org/
http://doc.gitlab.com/ce/ci/yaml/README.html

Scuba

(continued from previous page)

aliases:
build_c:
image: !from_yaml .gitlab-ci.yml build_c.image
script: !from_yaml .gitlab-ci.yml build_c.script

build_py:
image: !from_yaml .gitlab-ci.yml build_py.image
script: !from_yaml .gitlab-ci.yml build_py.script

An easier but less-flexible method is to simply import the entire job’s definition. This works becaue Scuba ignores
unrecognized keys in an alias:

Listing 7: .scuba.yml

aliases:
build_c: !from_yaml .gitlab-ci.yml build_c
build_py: !from_yaml .gitlab-ci.yml build_py

This example which concatenates two jobs from .gitlab-ci.yml into a single alias. This works by flattening the
effective script node that results by including two elements that are lists.

Listing 8: .gitlab-ci.yml

image: gcc:5.1

part1:
script:

- make something
part2:
script:

- make something-else

Listing 9: .scuba.yml

image: !from_yaml .gitlab-ci.yml image

aliases:
all_parts:
script:
- !from_yaml .gitlab-ci.yml part1.script
- !from_yaml .gitlab-ci.yml part2.script

Dots (.) in a YAML path can be escaped using a backslash (which must be doubled inside of quotes). This example
shows how to reference job names containing a . character:

Listing 10: .gitlab-ci.yml

image: gcc:5.1

.part1:
script:
- make something

.part2:
script:

(continues on next page)

3.1. Scuba YAML File Reference 15

Scuba

(continued from previous page)

- make something-else

Listing 11: .scuba.yml

image: !from_yaml .gitlab-ci.yml image

aliases:
build_part1: !from_yaml .gitlab-ci.yml "\\.part1.script"
build_part2: !from_yaml .gitlab-ci.yml "\\.part2.script"

Additional examples can be found in the example directory.

16 Chapter 3. Configuration

CHAPTER

FOUR

COMMAND-LINE INTERFACE

scuba [-h]
[-d DOCKER_ARG] [-e ENV_VAR] [--entrypoint ENTRYPOINT]
[--image IMAGE] [--shell SHELL] [-n] [-r] [-v] [-V]
COMMAND... | ALIAS...

Positional Arguments:

COMMAND
The command (and arguments) to run in the container

ALIAS
Alternatively, an alias to run

Options:

-h, --help Show help message and exit

-d DOCKER_ARG, --docker-arg DOCKER_ARG Pass additional arguments to docker
run. These are appended to any docker_args from .scuba.yml.

DOCKER_ARG is the full argument to docker run. Note: The - in the
DOCKER_ARG can confuse scuba’s argument parsing. The solution is to
use an equal sign: -d='--cpus=2'

This argument can be given multiple times.

-e ENV_VAR, --env ENV_VAR Environment variables to pass to docker. These are merged
with (and override) any environment variables from .scuba.yml.

ENV_VAR is given as KEY=value.

This argument can be given multiple times.

--entrypoint ENTRYPOINT Override the default ENTRYPOINT of the image

--image IMAGE Override Docker image specified in .scuba.yml

--shell SHELL Override shell used in Docker container

-n, --dry-run Don’t actually invoke docker; just print the docker cmdline

-r, --root Run container as root

-v, --version Show scuba version and exit

-V, --verbose Be verbose

17

Scuba

18 Chapter 4. Command-Line Interface

CHAPTER

FIVE

BASH COMPLETION

Scuba supports command-line completion using the argcomplete package. Per the argcomplete README, command-
line completion can be activated by:

• Running eval "$(register-python-argcomplete scuba)" manually to enable completion in the current
shell instance

• Adding eval "$(register-python-argcomplete scuba)" to ~/.bash_completion

• Running activate-global-python-argcomplete --user to install the script ~/.bash_completion.d/
python-argcomplete.

Note: The generated file must be sourced, which is not the default behavior. Adding the following code block
to ~/.bash_completion is one possible solution:

for bcfile in ~/.bash_completion.d/*; do
[-f "$bcfile"] && . "$bcfile"

done

• Running activate-global-python-argcomplete as root (or sudo) to use argcomplete for all users

19

https://github.com/kislyuk/argcomplete
https://github.com/kislyuk/argcomplete#global-completion

Scuba

20 Chapter 5. Bash Completion

CHAPTER

SIX

ENVIRONMENT

Scuba defines the following environment variables in the container:

• SCUBA_ROOT – (added in v2.4.0) The root of the scuba working directory mount; the directory where .scuba.
yml was found

21

Scuba

22 Chapter 6. Environment

CHAPTER

SEVEN

CHANGE LOG

All notable changes to this project will be documented in this file. This project adheres to Semantic Versioning.

7.1 2.13.0 - 2024-03-25

7.1.1 Added

• Added support for Python 3.12 (#244)

• Add explicit support for mounting named volumes (#250)

– This officially restores and extends the (unsupported) pre-v2.12 behavior.

7.1.2 Changed

• Removed use of deprecated pkg_resources (#247)

• Rewrote scubainit in Rust (#232)

7.2 2.12.0 - 2023-09-15

7.2.1 Added

• Enable the use of relative paths in a volume hostpath (#227)

7.3 2.11.0 - 2023-09-09

7.3.1 Changed

• Introduced pyproject.toml and moved metadata from setup.py (#211)

• Added type annotations to scuba package and mypy checking in CI (#207)

23

http://semver.org/

Scuba

7.3.2 Removed

• Drop support for Python 3.5 - 3.6 (#205)

7.3.3 Fixed

• Fixed bug causing invalid volume spec error on Docker 24.0.5 and newer (#217)

7.4 2.10.1 - 2023-03-07

7.4.1 Fixed

• Create directories for volumes as invoking user rather than root. (#201)

7.5 2.10.0 - 2022-01-12

7.5.1 Added

• Add ability to use environment variables in volume paths (#192)

7.6 2.9.0 - 2021-09-15

7.6.1 Added

• Add ability to specify volumes in .scuba.yml (#186)

7.7 2.8.0 - 2021-08-18

7.7.1 Added

• Add ability to specify additional docker arguments in .scuba.yml (#177)

7.7.2 Changed

• Switched testing framework from from nose to pytest

24 Chapter 7. Change Log

Scuba

7.8 2.7.0 - 2020-06-08

7.8.1 Changed

• Switched to using argcomplete to provide Bash command line completion (#162)

7.9 2.6.1 - 2020-04-24

7.9.1 Fixed

• scubainit ignores matching passwd/group/shadow file entries when creating the user. This allows transparently
running scuba as root. (#164)

• Fixed bug where scubainit incorrectly displayed the exit status of a failed hook script. (#165)

• Fixed bug where user home directory was not writable when scuba workdir existed below the home directory.
(#169)

7.10 2.6.0 - 2020-03-25

7.10.1 Added

• Add ability to override the shell in which the scuba-generated script is run, via command line option (--shell)
or via .scuba.yml (#159)

• Add ability to specify in .scuba.yml that a particular alias should run as root (#159)

7.11 2.5.0 - 2020-03-05

7.11.1 Changed

• Use username/groupname of invoking user inside container (#153)

• Ignore already existing UID/GIDs (#139)

• Allow top-level image to be omitted in .scuba.yml (#158)

7.11.2 Fixed

• Fixed deprecation error with collections.Mapping (#156)

7.8. 2.7.0 - 2020-06-08 25

Scuba

7.11.3 Removed

• Drop support for Python 2 (#154)

7.12 2.4.2 - 2020-02-24

7.12.1 Changed

• Use GitHub Actions instead of Travis CI for publishing releases

7.13 2.4.1 - 2020-02-21

7.13.1 Added

• Cache yaml files loaded by !from_yaml

7.13.2 Removed

• Drop support for Python 3.4

7.14 2.4.0 - 2020-01-06

7.14.1 Added

• Enable scuba to override entrypoint via --entrypoint or .scuba.yml (#125)

• Add support for nested scripts (#128)

• Add SCUBA_ROOT environment variable (#129)

• Add support for escaped dots in !from_yml (#137)

7.14.2 Changed

• Don’t run image entrypoint for each line in a mult-line alias (#121)

• Use yaml.SafeLoader for loading config (#133)

26 Chapter 7. Change Log

Scuba

7.14.3 Removed

• Drop support for Python 2.6, 3.2, and 3.3 (#119, #130)

7.15 2.3.0 - 2018-09-10

7.15.1 Added

• Add -e/–env command-line option (#111)

• Add support for setting environment in .scuba.yml (#120)

7.15.2 Changed

• Implemented auto-versioning using Git and Travis (#112)

7.15.3 Fixed

• Copy scubainit to allow SELinux relabeling (#117)

7.16 2.2.0 - 2018-03-07

7.16.1 Changed

• Allow script to be a single string value in the “common script schema” which applies to hooks and aliases
(#102)

7.16.2 Fixed

• Display nicer error message if no command is given and image doesn’t specify a Cmd (#104)

• Don’t mangle && in scripts (#100)

• Don’t allocate tty if stdin is redirected (#95)

7.17 2.1.0 - 2017-04-03

7.17.1 Added

• Added --image option (#87)

7.15. 2.3.0 - 2018-09-10 27

Scuba

7.18 2.0.1 - 2017-01-17

7.18.1 Fixed

• Fixed image entrypoint being ignored (#83)

7.19 2.0.0 - 2016-11-21

7.19.1 Added

• Added support for enhanced aliases (#67)

• Added support for per-alias image specification (#68)

• Add bash completion support (#69)

7.19.2 Changed

• All ancillary files are bind-mounted via single temp dir

• Hook scripts are moved to hooks/ subdirectory

• User commands always executed via shell (#66)

• Top-level directory mounted at same path in container (#70)

• Alias names cannot contain spaces

• Improve distributions (#74, #75, #76, #78)

7.19.3 Removed

• Remove support for remote Docker instances (#64) Support for this was limited/broken as of 1.7.0 anyway; this
officially removes support for it.

7.19.4 Fixed

• Fixed inability to run an image that doesn’t yet exist locally, broken in 1.7.0 (#79)

7.20 1.7.0 - 2016-05-19

7.20.1 Added

• Add support for scubainit hooks

28 Chapter 7. Change Log

https://github.com/JonathonReinhart/scuba/issues/79

Scuba

7.20.2 Changed

• scubainit re-implemented as a C program, which does the following:

– Creates the scubauser user/group

– Sets the umask

– Switches users then execs the user command This is to provide more control during initialization, without
the artifacts caused by the use of ‘su’ in the .scubainit from 1.3.

• scubauser now has a proper writable home directory in the container (#45)

7.21 1.6.0 - 2016-02-06

7.21.1 Added

• Add -d to pass arbitrary arguments to docker run

7.22 1.5.0 - 2016-02-01

7.22.1 Added

• Add -r option to run container as root

• Add automated testing (both unit and system tests)

• Add support for Python 2.6 - 3.5

• Added to PyPI

7.22.2 Changed

• Scuba is now a package, and setup.py installs it as such, including an auto-generated console_script wrapper.

• --dry-run output now shows an actual docker command-line.

• Only pass --tty to docker if scuba’s stdout is a TTY.

7.22.3 Fixed

• Better handle empty .scuba.yml and other YAML-related errors

• Fix numerous bugs when running under Python 3

7.21. 1.6.0 - 2016-02-06 29

Scuba

7.23 1.4.0 - 2016-01-08

7.23.1 Added

• Added --verbose and --dry-run options

7.23.2 Removed

• umask is no longer set in the container. (See #24)

7.23.3 Fixed

• Problems introduced in v1.3.0 with Ctrl+C in images are fixed. The user command now runs as PID 1 again, as
there is no more .scubainit script.

7.24 1.3.0 - 2016-01-07

7.24.1 Added

• Set umask in container to the same as the host (local Docker only)

7.24.2 Changed

• Change working directory from /build to /scubaroot

• Use .scubainit script to create scubauser user/group at container startup. This avoids the oddity of running
as a uid not listed in /etc/passwd, avoiding various bugs (see issue 11). (local Docker only)

7.25 1.2.0 - 2015-12-27

7.25.1 Added

• Search up the directory hierarchy for .scuba.yml; this allows invoking scuba from a project subdirectory.

• Add !from_yaml support to YAML loading; this allows specifying image from an external YAML file (e.g.
.gitlab-ci.yml).

• Add CHANGELOG.md

30 Chapter 7. Change Log

https://github.com/JonathonReinhart/scuba/pull/24
https://github.com/JonathonReinhart/scuba/issues/11

Scuba

7.25.2 Changed

• Show better error message when docker cannot be executed

7.26 1.1.2 - 2015-12-22

7.26.1 Fixed

• Don’t pass --user option when remote docker is being used

7.27 1.1.1 - 2015-12-22

7.27.1 Fixed

• Fix bug when aliases is not found in .scuba.yml

7.28 1.1.0 - 2015-12-20

7.28.1 Added

• Support for Bash-like aliases, specified in .scuba.yml

7.29 1.0.0 - 2015-12-18

7.29.1 Removed

• Remove the command node from .scuba.yml spec; it limits the usefulness of scuba by limiting the user to one
command. Now command is specified on command line after scuba.

7.29.2 Added

• Argument parsing to scuba (-v for version)

• Check for and reject extraneous nodes in .scuba.yml

7.30 0.1.0 - 2015-12-09

First versioned release

7.26. 1.1.2 - 2015-12-22 31

Scuba

32 Chapter 7. Change Log

CHAPTER

EIGHT

CONTRIBUTING GUIDE

This file is incomplete. Feel free to open an issue if there is missing information you desire.

8.1 Code Format

Scuba is compliant with the Black code style. Code format in PRs is verified by a GitHub action.

To check code formatting:

$./code_format.py

To fix code formatting:

$./code_format.py --fix

33

https://black.readthedocs.io/

	Introduction
	Installation
	Install via pip
	Install from source

	Configuration
	Scuba YAML File Reference
	Top-level keys
	image
	environment
	docker_args
	volumes
	aliases
	hooks
	shell
	entrypoint

	Alias-level keys
	image
	environment
	docker_args
	volumes
	shell
	entrypoint
	root

	Common script schema
	Accessing external YAML content

	Command-Line Interface
	Bash Completion
	Environment
	Change Log
	2.13.0 - 2024-03-25
	Added
	Changed

	2.12.0 - 2023-09-15
	Added

	2.11.0 - 2023-09-09
	Changed
	Removed
	Fixed

	2.10.1 - 2023-03-07
	Fixed

	2.10.0 - 2022-01-12
	Added

	2.9.0 - 2021-09-15
	Added

	2.8.0 - 2021-08-18
	Added
	Changed

	2.7.0 - 2020-06-08
	Changed

	2.6.1 - 2020-04-24
	Fixed

	2.6.0 - 2020-03-25
	Added

	2.5.0 - 2020-03-05
	Changed
	Fixed
	Removed

	2.4.2 - 2020-02-24
	Changed

	2.4.1 - 2020-02-21
	Added
	Removed

	2.4.0 - 2020-01-06
	Added
	Changed
	Removed

	2.3.0 - 2018-09-10
	Added
	Changed
	Fixed

	2.2.0 - 2018-03-07
	Changed
	Fixed

	2.1.0 - 2017-04-03
	Added

	2.0.1 - 2017-01-17
	Fixed

	2.0.0 - 2016-11-21
	Added
	Changed
	Removed
	Fixed

	1.7.0 - 2016-05-19
	Added
	Changed

	1.6.0 - 2016-02-06
	Added

	1.5.0 - 2016-02-01
	Added
	Changed
	Fixed

	1.4.0 - 2016-01-08
	Added
	Removed
	Fixed

	1.3.0 - 2016-01-07
	Added
	Changed

	1.2.0 - 2015-12-27
	Added
	Changed

	1.1.2 - 2015-12-22
	Fixed

	1.1.1 - 2015-12-22
	Fixed

	1.1.0 - 2015-12-20
	Added

	1.0.0 - 2015-12-18
	Removed
	Added

	0.1.0 - 2015-12-09

	Contributing Guide
	Code Format

